Test Bank for College Algebra 7th Blitzer

of 152

Please download to get full document.

View again

All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
PDF
152 pages
0 downs
0 views
Share
Description
CLICK HERE TO ACCESS FULL TEST BANKTEST BANK FOR College Algebra7th Edition By Blitzer ISBN13-9780134469164CLICK HERE TO ACCESS FULL VERSIONCh. 2 Functions and…
Transcript
CLICK HERE TO ACCESS FULL TEST BANKTEST BANK FOR College Algebra7th Edition By Blitzer ISBN13-9780134469164CLICK HERE TO ACCESS FULL VERSIONCh. 2 Functions and Graphs 2.1 Basics of Functions and Their Graphs 1 Find the Domain and Range of a Relation MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Give the domain and range of the relation. 1) {(1, -7), (7, 1), (3, -1), (3, 4)} A) domain = {1, 3, 7}; range = {-7, -1, 1, 4} C) domain = {1, 3, 7, 13}; range = {-7, -1, 1, 4} 2) {(6, 6), (11, -5), (3, 4), (3, -3)} A) domain = {6, 3, 11}; range = {6, 4, -5, -3} C) domain = {6, 3, 11, 13}; range = {6, 4, -5, -3}B) domain = {-7, -1, 1, 4}; range = {1, 3, 7} D) domain = {1, 3, 7, -3}; range = {-7, -1, 1, 4} B) domain = {6, 3, 11, -3}; range = {6, 4, -5, -3} D) domain = {6, 4, -5, -3}; range = {6, 3, 11}3) {(-4, -5), (9, -1), (7, 3), (-3, -3)} A) domain = {9, -3, -4, 7}; range = {-1, -3, -5, 3} B) domain = {-1, -3, -5, 3}; range = {9, -3, -4, 7} C) domain = {9, -3, -4, 7}; range = {-1, 5, -3, -5, 3} D) domain = {9, -3, -4, 7}; range = {-1, -1, -3, -5, 3} 4) {(-5, 1), (-5, 3), (9, 9), (4, -4), (-1, -1)} A) domain = {4, -5, -1, 9}; range = {-4, 3, -1, 9, 1} B) domain = {4, -4, -5, -1, 9}; range = {-4, 3, -1, 9, 1} C) domain = {4, 14, -5, -1, 9}; range = {-4, 3, -1, 9, 1} D) domain = {-4, 3, -1, 9, 1}; range = {4, 4, -5, -1, 9} 5) {(41, -3), (5, -2), (5, 0), (9, 2), (21, 4)} A) domain: {41, 9, 5, 21}; range: {-3, -2, 0, 2, 4} C) domain: {-3, -2, 0, 2, 4}; range: {41, 9, 5, 21}B) domain: {-3, -2, 2, 4}; range: {41, 9, 5, 21} D) domain: {41, 9, 5, 21}; range: {-3, -2, 2, 4}6) {(6, -5), (3, 2), (4, 6), (-1, 3), (-4, 9)} A) domain = {4, -1, 3, 6, -4}; range = {6, 3, 2, -5, 9} B) domain = {6, 3, 2, -5, 9}; range = {4, -1, 3, 6, -4} C) domain = {4, 6, -1, 3, 3}; range = {2, 6, -5, -4, 9} D) domain = {2, 6, -5, -4, 9}; range = {4, 6, -1, 3, 3} 7) {(-2, 6), (-1, 3), (0, 2), (1, 3), (3, 11)} A) domain: {-2, -1, 0, 1, 3}; range: {6, 3, 2, 11} C) domain: {6, 3, 2, 11}; range: {-2, -1, 0, 1, 3}B) domain: {-2, -1, 1, 3}; range: {6, 3, 2, 11} D) domain: {6, 3, 2, 11}; range: {-2, -1, 1, 3}2 Determine Whether a Relation is a Function MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether the relation is a function. 1) {(-1, -6), (2, -5), (4, 9), (8, -5), (10, 3)} A) Function 2) {(-6, 3), (-1, 3), (1, -1), (1, 1)} A) Not a functionPage 1B) Not a functionB) Function3) {(-6, 8), (-6, -5), (2, -8), (6, -8), (9, 6)} A) Not a functionB) Function4) {(1, -2), (1, -4), (4, -3), (9, -1), (12, 5)} A) Not a functionB) Function5) {(-5, 4), (-2, 9), (4, 8), (5, 2)} A) FunctionB) Not a function6) {(-9, 2), (-9, 5), (2, 7), (4, -1), (9, 4)} A) Not a functionB) Function7) {(-7, -1), (-3, -6), (-2, -7), (2, -2)} A) FunctionB) Not a function8) {(-4, -1), (-3, 7), (2, -8), (2, -9)} A) Not a functionB) Function9) {(-6, 6), (-1, 2), (2, -3), (5, 5)} A) FunctionB) Not a function10) {(-3, -8), (3, 6), (5, -5), (7, -6), (10, 6)} A) FunctionB) Not a function3 Determine Whether an Equation Represents a Function MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether the equation defines y as a function of x. 1) x + y = 49 A) y is a function of xPage 2B) y is not a function of x2) 5x + 7y = 8 A) y is a function of xB) y is not a function of x3) x2 + y = 25 A) y is a function of xB) y is not a function of x4) x + y 2 = 1 A) y is a function of xB) y is not a function of x5) x2 + y 2 = 36 A) y is a function of xB) y is not a function of x6) y 2 = 6x A) y is a function of xB) y is not a function of x7) x = y 2 A) y is a function of xB) y is not a function of x8) y = x3 A) y is a function of xB) y is not a function of x9) y = - x - 8 A) y is a function of xB) y is not a function of x10) y = 6x - 2 A) y is a function of xB) y is not a function of x11) x + y 3 = 1 A) y is a function of xB) y is not a function of x12) xy + 6y = 1 A) y is a function of xB) y is not a function of x13) |x| - y = 6 A) y is a function of xB) y is not a function of x4 Evaluate a Function MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Evaluate the function at the given value of the independent variable and simplify. 1) f(x) = 2x + 4; f(6) A) 16 B) 36 C) 8 2) f(x) = x2 - 4; f(x + 3) 2 A) x + 6x + 5B) x2 + 9C) x2 + 6x + 9D) x2 - 13) f(x) = 3x2 - 4x + 2; f(x - 1) A) 3x2 - 10x + 9B) -10x2 + 3x + 9C) 3x2 - 10x + 1D) 3x2 + 2x + 1B) 3x + 1C) 3x - 1D)5) h(x) = x - 11 ; h(15) A) 4B) -26C) 26D) -46) f(x) = x + 19; A) 4B) -4C) 2D) not a real number4) g(x) = 3x + 1;g(x + 1)A) 3x + 47) f(x) =8) f(x) = A)1 x+1 3f(-3)x2 - 3 ; f(2) x3 - 6xA) -Page 3D) 61 4x3 + 8 ; x2 - 419 3B)1 8C)1 2D) - 1B)133 25C)125 21D)f(5) 11 7Solve the problem. 9) The function P(x) = 0.65x - 57 models the relationship between the number of pretzels x that a certain vendor sells and the profit the vendor makes. Find P(1000), the profit the vendor makes from selling 1000 pretzels. A) $593 B) $650 C) $707 D) $943 10) The total cost in dollars for a certain company to produce x empty jars to be used by a jelly producer is given by the function C(x) = 0.3x + 27,000. Find C(90,000), the cost of producing 90,000 jars. A) $54,000 B) $27,000 C) $27.30 D) $90,027Page 45 Graph Functions by Plotting Points MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Graph the given functions on the same rectangular coordinate system. Describe how the graph of g is related to the graph of f. 1) f(x) = x, g(x) = x + 1 6y5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1123456 x-2 -3 -4 -5 -6A) g shifts the graph of f vertically up 1 unit 6y65544332211-6 -5 -4 -3 -2 -1 -1123456 x-2-3-3-4-4-5-5-6-66y6 544332211 123456 x123456 xD) g shifts the graph of f vertically up 1 unit5-6 -5 -4 -3 -2 -1 -1y-6 -5 -4 -3 -2 -1 -1-2C) g shifts the graph of f vertically down 1 unitPage 5B) g shifts the graph of f vertically down 1 unit-6 -5 -4 -3 -2 -1 -1-2-2-3-3-4-4-5-5-6-6y123456 x2) f(x) = x, g(x) = x - 4 6y5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1123456 x-2 -3 -4 -5 -6A) g shifts the graph of f vertically down 4 units 6y65544332211-6 -5 -4 -3 -2 -1 -1123456 x-2-3-3-4-4-5-5-6-66y6 544332211 123456 x123456 xD) g shifts the graph of f vertically up 4 units5-6 -5 -4 -3 -2 -1 -1y-6 -5 -4 -3 -2 -1 -1-2C) g shifts the graph of f vertically up 4 unitsPage 6B) g shifts the graph of f vertically down 4 units-6 -5 -4 -3 -2 -1 -1-2-2-3-3-4-4-5-5-6-6y123456 x3) f(x) = -4x, g(x) = -4x - 4 6y5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1123456 x-2 -3 -4 -5 -6A) g shifts the graph of f vertically down 4 units 6y65544332211-6 -5 -4 -3 -2 -1 -1123456 x-2-3-3-4-4-5-5-6-66y6 544332211 123456 x123456 xD) g shifts the graph of f vertically up 4 units5-6 -5 -4 -3 -2 -1 -1y-6 -5 -4 -3 -2 -1 -1-2C) g shifts the graph of f vertically up 4 unitsPage 7B) g shifts the graph of f vertically down 4 units-6 -5 -4 -3 -2 -1 -1-2-2-3-3-4-4-5-5-6-6y123456 x4) f(x) = x2, g(x) = x2 + 1 6y5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1123456 x-2 -3 -4 -5 -6A) g shifts the graph of f vertically up 1 unit 6y65544332211-6 -5 -4 -3 -2 -1 -1123456 x-2-3-3-4-4-5-5-6-66y6 544332211 123456 x123456 xD) g shifts the graph of f vertically up 1 unit5-6 -5 -4 -3 -2 -1 -1y-6 -5 -4 -3 -2 -1 -1-2C) g shifts the graph of f vertically down 1 unitPage 8B) g shifts the graph of f vertically down 1 unit-6 -5 -4 -3 -2 -1 -1-2-2-3-3-4-4-5-5-6-6y123456 x5) f(x) = 2x2, g(x) = 2x2 - 2 6y5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1123456 x-2 -3 -4 -5 -6A) g shifts the graph of f vertically down 2 units 6y65544332211-6 -5 -4 -3 -2 -1 -1123456 x-2-3-3-4-4-5-5-6-66y6 544332211 123456 x123456 xD) g shifts the graph of f vertically up 2 units5-6 -5 -4 -3 -2 -1 -1y-6 -5 -4 -3 -2 -1 -1-2C) g shifts the graph of f vertically up 2 unitsPage 9B) g shifts the graph of f vertically down 2 units-6 -5 -4 -3 -2 -1 -1-2-2-3-3-4-4-5-5-6-6y123456 x6) f(x) = x , g(x) = x + 4 6y5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1123456 x-2 -3 -4 -5 -6A) g shifts the graph of f vertically up 4 units 6y65544332211-6 -5 -4 -3 -2 -1 -1123456 x-2-3-3-4-4-5-5-6-66y6 544332211 123456 x123456 xD) g shifts the graph of f vertically up 4 units5-6 -5 -4 -3 -2 -1 -1y-6 -5 -4 -3 -2 -1 -1-2C) g shifts the graph of f vertically down 4 unitsPage 10B) g shifts the graph of f vertically down 4 units-6 -5 -4 -3 -2 -1 -1-2-2-3-3-4-4-5-5-6-6y123456 x7) f(x) = x , g(x) = x - 4 6y5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1123456 x-2 -3 -4 -5 -6A) g shifts the graph of f vertically down 4 units 6y65544332211-6 -5 -4 -3 -2 -1 -1123456 x-2-3-3-4-4-5-5-6-66y6 544332211123456 x123456 xD) g shifts the graph of f vertically up 4 units5-6 -5 -4 -3 -2 -1 -1y-6 -5 -4 -3 -2 -1 -1-2C) g shifts the graph of f vertically down 4 unitsPage 11B) g shifts the graph of f vertically up 4 units-6 -5 -4 -3 -2 -1 -1-2-2-3-3-4-4-5-5-6-6y123456 x8) f(x) = x3, g(x) = x3 + 3 6y5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1123456 x-2 -3 -4 -5 -6A) g shifts the graph of f vertically up 3 units 6y65544332211-6 -5 -4 -3 -2 -1 -1123456 x-6 -5 -4 -3 -2 -1 -1-2-2-3-3-4-4-5-5-6-6C) g shifts the graph of f vertically up 3 units 6y6 544332211 123456 xy123456 xD) g shifts the graph of f vertically down 3 units5-6 -5 -4 -3 -2 -1 -1Page 12B) g shifts the graph of f vertically down 3 units-6 -5 -4 -3 -2 -1 -1-2-2-3-3-4-4-5-5-6-6y123456 x9) f(x) = x, g(x) = x + 3 6y5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1123456 x-2 -3 -4 -5 -6A) g shifts the graph of f vertically up 3 units 6y65544332211-6 -5 -4 -3 -2 -1 -1123456 x-2-3-3-4-4-5-5-6-66y6 544332211 123456 x123456 xD) g shifts the graph of f vertically up 3 units5-6 -5 -4 -3 -2 -1 -1y-6 -5 -4 -3 -2 -1 -1-2C) g shifts the graph of f vertically down 3 unitsPage 13B) g shifts the graph of f vertically down 3 units-6 -5 -4 -3 -2 -1 -1-2-2-3-3-4-4-5-5-6-6y123456 x10) f(x) = x, g(x) = x - 1 6y5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1123456 x-2 -3 -4 -5 -6A) g shifts the graph of f vertically down 1 unit 6y65544332211-6 -5 -4 -3 -2 -1 -1123456 x-2-3-3-4-4-5-5-6-66y6 544332211 123456 x123456 xD) g shifts the graph of f vertically up 1 unit5-6 -5 -4 -3 -2 -1 -1y-6 -5 -4 -3 -2 -1 -1-2C) g shifts the graph of f vertically down 1 unitPage 14B) g shifts the graph of f vertically up 1 unit-6 -5 -4 -3 -2 -1 -1-2-2-3-3-4-4-5-5-6-6y123456 x11) f(x) = x, g(x) = x + 1 6y5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1123456 x-2 -3 -4 -5 -6A) g shifts the graph of f 1 unit to the left 6y65544332211-6 -5 -4 -3 -2 -1 -1123456 x-2-3-3-4-4-5-5-6-66y6 544332211 123456 x123456 xD) g shifts the graph of f vertically down 1 unit5-6 -5 -4 -3 -2 -1 -1y-6 -5 -4 -3 -2 -1 -1-2C) g shifts the graph of f vertically up 1 unitPage 15B) g shifts the graph of f 1 unit to the right-6 -5 -4 -3 -2 -1 -1-2-2-3-3-4-4-5-5-6-6y123456 x12) f(x) = x, g(x) = x - 1 6y5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1123456 x-2 -3 -4 -5 -6A) g shifts the graph of f 1 unit to the right 6y65544332211-6 -5 -4 -3 -2 -1 -1123456 x-2-3-3-4-4-5-5-6-66y6 544332211 123456 x123456 xD) g shifts the graph of f vertically down 1 unit5-6 -5 -4 -3 -2 -1 -1y-6 -5 -4 -3 -2 -1 -1-2C) g shifts the graph of f vertically up 1 unitPage 16B) g shifts the graph of f 1 unit to the left-6 -5 -4 -3 -2 -1 -1-2-2-3-3-4-4-5-5-6-6y123456 x6 Use the Vertical Line Test to Identify Functions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use the vertical line test to determine whether or not the graph is a graph in which y is a function of x. 1) yxA) functionB) not a function2) yxA) functionB) not a function3) yxA) not a functionPage 17B) function4) yxA) not a functionB) function5) yxA) functionB) not a function6) yxA) not a functionPage 18B) function7) yxA) functionB) not a function8) yxA) functionB) not a function9) yxA) functionPage 19B) not a function10) yxA) functionB) not a function11) yxA) not a functionB) function12) yxA) functionPage 20B) not a function13) yxA) not a functionB) function7 Obtain Information About a Function from Its Graph MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use the graph to find the indicated function value. 1) y = f(x). Find f(-1) 5y4 3 2 1 -5-4-3-2-11-12345 x-2 -3 -4 -5B) -2.5A) 2.5C) 0.3D) -0.3C) 9D) -32) y = f(x). Find f(3). 5y4 3 2 1 -5-4-3-2-1-112345 x-2 -3 -4 -5A) 1.5 Page 21B) 33) y = f(x). Find f(-2) 5y4 3 2 1 -5-4-3-2-11-12345 x-2 -3 -4 -5B) -2A) 2C) 5D) 1.25C) -9D) 1.5C) 4D) 34) y = f(x). Find f(4) y 12 10 8 6 4 2 -5-4-3-2-11-2 -42345 x-6 -8 -10 -12A) 9B) 75) y = f(x). Find f(-4) 13 12 11 10 9 8 7 6 5 4 3 2 1 -5-4A) 0Page 22-3-2-1 -1y1234B) 95 xThe graph below shows the percentage of students enrolled in the College of Engineering at State University. Use the graph to answer the question.6) Does the graph represent a function? A) yesB) no7) If f represents the function, find f(1990). A) approximately 26% C) approximately 22.5%B) approximately 28% D) approximately 21%8) If f(x) = 26%, what year is represented by x? A) 1990 B) 1985C) 19959) Between what two years is the difference in function values equal to 5%? A) between 1980 and 1985 B) between 1985 and 1990 C) between 1970 and 1975 D) between 1960 and 1965Page 23D) 19808 Identify the Domain and Range of a Function from Its Graph MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use the graph to determine the function's domain and range. 1) 6y5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1123456 x-2 -3 -4 -5 -6A) domain: (-∞, ∞) range: (-∞, ∞)B) domain: (-∞, ∞) range: y = -5C) domain: x = -5 2D) domain: x = -range: (-∞, ∞)2) 6y5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1123456 x-2 -3 -4 -5 -6A) domain: (-∞, ∞) range: [-5, ∞) C) domain: (-∞, ∞) range: (-∞, ∞)Page 24B) domain: [4, ∞) range: [-5, ∞) D) domain: (-∞, 4) or (4, ∞) range: (-∞, -5) or (-5, ∞)range: y = -55 23) 6y5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1123456 x-2 -3 -4 -5 -6A) domain: (-∞, ∞) range: (-∞, 4] C) domain: (-∞, 5] range: (-∞, 4]B) domain: (-∞, ∞) range: (-∞, ∞) D) domain: (-∞, 5) or (5, ∞) range: (-∞, 4) or (4, ∞)4) 6y5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1123456 x-2 -3 -4 -5 -6A) domain: [0, ∞) range: [-2, ∞)Page 25B) domain: [0, ∞) range: (-∞, ∞)C) domain: (-∞, ∞) range: [-2, ∞)D) domain: [0, ∞) range: [0, ∞)5) y10 8 6 4 2 -10 -8-6-4-22-246x8-4 -6 -8 -10A) domain: (-∞, ∞) range: [0, 4]B) domain: (-∞, ∞) range: [2, 4]C) domain: [0, 4] range: (-∞, ∞)D) domain: [2, 4] range: (-∞, ∞)9 Identify Intercepts from a Function's Graph. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the intercepts. 1) y 105-10-5510x-5-10A) (-2, 0), (0, 6)B) (2, 0), (0, 6)C) (-2, 0), (0, -6)D) (-6, 0), (0, 6)C) (2, 0), (0, -6)D) (-6, 0), (0, 6)2) y 105-10-5510x-5-10A) (2, 0), (0, 6)Page 26B) (-2, 0), (0, 6)3) y 105-10-5510x-5-10A) (1, 0), (0, -7)B) (-1, 0), (0, -7)C) (1, 0), (0, 7)D) (-7, 0), (0, 7)4) y 105-10-5510x-5-10A) (5, 0), (-5, 0), (0, 4), (0, -4) C) (0, 4), (0, -4)B) (5, 0), (-5, 0) D) (4, 0), (-4, 0), (0, 5), (0, -5)5) y 105-10-5510x-5-10A) (-2, 0), (0, 8)Page 27B) (-2, 0), (0, -8)C) (2, 0), (0, 8)D) (-2, -2), (8, 8)6) y 105-10-55x10-5-10A) (4, 0), (-4, 0), (0, -4) C) (0, -4)B) (4, 0), (-4, 0) D) (4, 0), (-4, 0), (0, 0)2.2 More on Functions and Their Graphs 1 Identify Intervals on Which a Function Increases, Decreases, or is Constant MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the intervals where the function is changing as requested. 1) Increasing 5y4 3 2 1 -5-4-3-2-1-112345 x-2 -3 -4 -5A) (-2, 2)Page 28B) (-3, 3)C) (-2, â&#x2C6;&#x17E;)D) (-3, â&#x2C6;&#x17E;)2) Constant 5y4 3 2 1 -5-4-3-2-11-12345 x-2 -3 -4 -5A) (-∞, -1) or (3, ∞)B) (-1, 0)C) (3, ∞)D) (-∞, 0)C) (-2, ∞)D) (-2, 0)C) (-2, 1)D) (-1, 3)3) Increasing 5y4 3 2 1 -10 -8-6-4-22-146810 x-2 -3 -4 -5A) (3, ∞)B) (3, 6)4) Increasing 5y4 3 2 1 -5-4-3-2-1-112345 x-2 -3 -4 -5A) (-2, -1) or (3, ∞)Page 29B) (-1, ∞)5) Increasing y 84-12-6612x-4-8A) (0, 5)B) (1, 6)C) (0, 6)D) (1, 5)C) (-∞, -1)D) (-1, 0)C) (-∞, -3)D) (-∞, -2)6) Increasing 5y4 3 2 1 -5-4-3-2-11-12345 x-2 -3 -4 -5A) (0, 3)B) (-∞, 0)7) Decreasing 5y4 3 2 1 -5-4-3-2-1-112345 x-2 -3 -4 -5A) (-3, -2)Page 30B) (0, -2)8) Decreasing y 84-12-6612x-4-8A) (5, 12)B) (6, 1)C) (5, 1)D) (6, 12)C) (0, 3)D) (0, -2)C) (-2, -1)D) (2, ∞)9) Decreasing 5y4 3 2 1 -10 -8-6-4-22-146810 x-2 -3 -4 -5B) (-∞, -2)A) (-∞, 3) 10) Constant 5y4 3 2 1 -5-4-3-2-1-112345 x-2 -3 -4 -5A) (-1, 1)Page 31B) (1, 2)2 Use Graphs to Locate Relative Maxima or Minima MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The graph of a function f is given. Use the graph to answer the question. 1) Find the numbers, if any, at which f has a relative maximum. What are the relative maxima? 5y4 3 2 1 -5-4-3-2-11-12345 x-2 -3 -4 -5A) f has a relative maximum at x = 0; the relative maximum is 1 B) f has a relative maximum at x = -3 and 3; the relative maximum is 0 C) f has a relative maximum at x = 3; the relative maximum is 1 D) f has no relative maximum 2) Find the numbers, if any, at which f has a relative minimum. What are the relative minima? 5y4 3 2 1 -5-4-3-2-1-112345 x-2 -3 -4 -5A) f has a relative minimum at x = -1 and 1; the relative minimum is 0 B) f has a relative minimum at x = 0; the relative minimum is 1 C) f has a relative minimum at x = -1; the relative minimum is 0 D) f has no relative minimumPage 32Use the graph of the given function to find any relative maxima and relative minima. 3) f(x) = x3 - 3x2 + 1 5y4 3 2 1 -5-4-3-2-11-12345 x-2 -3 -4 -5A) maximum: (0, 1); minimum: (2, -3) C) maximum: none; minimum: (2, -3)B) maximum: (0, 1); minimum: none D) no maximum or minimum4) f(x) = x3 - 12x + 2 20y16 12 8 4 -5-4-3-2-1-412345 x-8 -12 -16 -20A) minimum: (2, -14); maximum: (-2, 18) B) maximum: (-2, 18) and (0, 0); minimum: (2, -14) C) maximum: (2, -14); minimum: (-2, 18) D) no maximum or minimum 3 Identify Even or Odd Functions and Recognize Their Symmetries MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether the given function is even, odd, or neither. 1) f(x) = x3 - 4x A) Odd B) EvenC) Neither2) f(x) = 5x2 + x4 A) EvenB) OddC) Neither3) f(x) = x5 - x4 A) NeitherB) EvenC) OddPage 334) f(x) = -5x5 + x3 A) OddB) EvenC) Neither5) f(x) = x3 + x2 + 3 A) NeitherB) EvenC) OddUse possible symmetry to determine whether the graph is the graph of an even function, an odd function, or a function that is neither even nor odd. 6) y 10 8 6 4 2 -10 -8 -6 -4 -2 -22468 10 x-4 -6 -8 -10A) EvenB) OddC) NeitherB) OddC) EvenB) EvenC) Neither7) y 10 8 6 4 2 -10 -8 -6 -4 -2 -22468 10 x-4 -6 -8 -10A) Neither 8) y 10 8 6 4 2 -10 -8 -6 -4 -2 -22468 10 x-4 -6 -8 -10A) OddPage 344 Understand and Use Piecewise Functions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Evaluate the piecewise function at the given value of the independent variable. 1) f(x) = 3x + 4 if x < -1 ; f(3) 2x - 4 if x ≥ -1 A) 2 B) 5 C) 10 if x > 4 ; f(1) 2) f(x) = x + 1 -(x + 1) if x ≤ 4 A) -2 B) 2 x2 + 8 3) g(x) = x - 3if x ≠ 3x+6 57 A) 4C) 1D) 18; g(7)if x = 3 B) 13x2 - 4 4) h(x) = x - 2if x ≠ 2x+2C)15 4D) 7; h(2)if x = 2A) 4B) undefinedGraph the function. 5) f(x) = x + 4 -1D) 6D) -4C) 0if x < 1 if x ≥ 1 y 5-55x-5A)B) y 5-55(1, 5)(1, -1)-5Page 35y5x(1, 5)(1, -1)-5-55xC)D) y (-1, 5)-5y (-1, 5)5(-1, -1)5x5-55 (-1, -1)-5Page 36-5x6) f(x) = -x + 3 2x - 3if x < 2 if x â&#x2030;Ľ 2 y 5-55x-5A)B) yy55-55x-5-5x5x-5C)D) yy5-555-5Page 375x-5-5x+2 7) f(x) = -8 -x + 7if -8 â&#x2030;¤ x < 4 if x = 4 if x > 4 y 105-10-5510x-5-10A)B) yy1010 (4, 6)5-10(4, 6) 5(4, 3)-5510x-10-5-5510x10x-5(-8, -6)(-8, -6) (4, -8)-10(4, -8)-10C)D) yy1010 (4, 7)5-10(-8, -5)-5(4, 7) 5(4, 3)5 -5-10Page 38(4, 3)10x-10(-8, -5) (4, -8)-5(4, 3)5 -5-10(4, -8)Based on the graph, find the range of y = f(x). 1 - x if x ≠ 0 8) f(x) = 2 -5if x = 0 y105-10-5x5 -5(0, -5)-10A) (-∞, 0)
Related Search
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks